此函數讓您可以寫入資料集。透過寫入更有效率的二進位儲存格式,並指定相關的分割,您可以讓讀取和查詢速度更快。
用法
write_dataset(
dataset,
path,
format = c("parquet", "feather", "arrow", "ipc", "csv", "tsv", "txt", "text"),
partitioning = dplyr::group_vars(dataset),
basename_template = paste0("part-{i}.", as.character(format)),
hive_style = TRUE,
existing_data_behavior = c("overwrite", "error", "delete_matching"),
max_partitions = 1024L,
max_open_files = 900L,
max_rows_per_file = 0L,
min_rows_per_group = 0L,
max_rows_per_group = bitwShiftL(1, 20),
...
)
引數
- dataset
Dataset、 RecordBatch、 Table、
arrow_dplyr_query
或data.frame
。如果為arrow_dplyr_query
,查詢將會被評估,且結果將會被寫入。這表示您可以select()
、filter()
、mutate()
等等來轉換資料,如果您需要的話,在寫入之前。- path
字串路徑、URI 或
SubTreeFileSystem
參考要寫入的目錄(如果目錄不存在將會建立)- format
檔案格式的字串識別符。預設為使用 "parquet"(請參閱 FileFormat)
- partitioning
Partitioning
或字元向量,用於作為分割鍵的欄位(將寫入為路徑區段)。預設為使用目前的group_by()
欄位。- basename_template
要寫入的檔案名稱的字串範本。必須包含
"{i}"
,這將會被替換為自動遞增的整數,以產生資料檔案的基本名稱。例如,"part-{i}.arrow"
將產生"part-0.arrow", ...
。如果未指定,則預設為"part-{i}.<預設副檔名>"
。- hive_style
邏輯值:以 Hive 樣式(
key1=value1/key2=value2/file.ext
)或僅以裸值寫入分割區段。預設為TRUE
。- existing_data_behavior
當目標目錄中已存在資料時要使用的行為。必須是 "overwrite"、"error" 或 "delete_matching" 之一。
"overwrite"(預設值)然後任何新建立的檔案將覆寫現有檔案
"error" 則如果目標目錄不是空的,操作將會失敗
"delete_matching" 則寫入器將刪除任何現有的分割區,如果資料將被寫入到這些分割區,並且將保留未寫入資料的分割區。
- max_partitions
任何批次可以寫入的最大分割區數量。預設值為 1024L。
- max_open_files
在寫入操作期間可以保持開啟的最大檔案數量。如果大於 0,則這將限制可以保持開啟的最大檔案數量。如果嘗試開啟過多檔案,則最近最少使用的檔案將被關閉。如果此設定設定得太低,您最終可能會將資料分割成許多小檔案。預設值為 900,這也允許掃描器在達到預設 Linux 限制 1024 之前開啟一些檔案。
- max_rows_per_file
每個檔案的最大列數。如果大於 0,則這將限制任何單個檔案中放置的列數。預設值為 0L。
- min_rows_per_group
當累積到此列數時,將列群組寫入磁碟。預設值為 0L。
- max_rows_per_group
單一群組中允許的最大列數,當超過此列數時,它將被分割,並且下一組列將被寫入到下一個群組。此值必須設定為大於
min_rows_per_group
。預設值為 1024 * 1024。- ...
其他格式特定的引數。如需可用的 Parquet 選項,請參閱
write_parquet()
。可用的 Feather 選項為use_legacy_format
邏輯值:寫入格式化的資料,以便 Arrow 程式庫 0.14 及更低版本可以讀取它。預設值為FALSE
。您也可以透過設定環境變數ARROW_PRE_0_15_IPC_FORMAT=1
來啟用此功能。metadata_version
:字串,如 "V5" 或等效的整數,表示 Arrow IPC MetadataVersion。預設值 (NULL
) 將使用最新版本,除非環境變數ARROW_PRE_1_0_METADATA_VERSION=1
,在這種情況下它將是 V4。codec
:Codec,將用於壓縮已寫入檔案的本文緩衝區。預設值 (NULL) 將不會壓縮本文緩衝區。null_fallback
:字元,當使用 Hive 樣式分割時,用於代替遺失值(NA
或NULL
)。請參閱hive_partition()
。
範例
# You can write datasets partitioned by the values in a column (here: "cyl").
# This creates a structure of the form cyl=X/part-Z.parquet.
one_level_tree <- tempfile()
write_dataset(mtcars, one_level_tree, partitioning = "cyl")
list.files(one_level_tree, recursive = TRUE)
#> [1] "cyl=4/part-0.parquet" "cyl=6/part-0.parquet" "cyl=8/part-0.parquet"
# You can also partition by the values in multiple columns
# (here: "cyl" and "gear").
# This creates a structure of the form cyl=X/gear=Y/part-Z.parquet.
two_levels_tree <- tempfile()
write_dataset(mtcars, two_levels_tree, partitioning = c("cyl", "gear"))
list.files(two_levels_tree, recursive = TRUE)
#> [1] "cyl=4/gear=3/part-0.parquet" "cyl=4/gear=4/part-0.parquet"
#> [3] "cyl=4/gear=5/part-0.parquet" "cyl=6/gear=3/part-0.parquet"
#> [5] "cyl=6/gear=4/part-0.parquet" "cyl=6/gear=5/part-0.parquet"
#> [7] "cyl=8/gear=3/part-0.parquet" "cyl=8/gear=5/part-0.parquet"
# In the two previous examples we would have:
# X = {4,6,8}, the number of cylinders.
# Y = {3,4,5}, the number of forward gears.
# Z = {0,1,2}, the number of saved parts, starting from 0.
# You can obtain the same result as as the previous examples using arrow with
# a dplyr pipeline. This will be the same as two_levels_tree above, but the
# output directory will be different.
library(dplyr)
two_levels_tree_2 <- tempfile()
mtcars %>%
group_by(cyl, gear) %>%
write_dataset(two_levels_tree_2)
list.files(two_levels_tree_2, recursive = TRUE)
#> [1] "cyl=4/gear=3/part-0.parquet" "cyl=4/gear=4/part-0.parquet"
#> [3] "cyl=4/gear=5/part-0.parquet" "cyl=6/gear=3/part-0.parquet"
#> [5] "cyl=6/gear=4/part-0.parquet" "cyl=6/gear=5/part-0.parquet"
#> [7] "cyl=8/gear=3/part-0.parquet" "cyl=8/gear=5/part-0.parquet"
# And you can also turn off the Hive-style directory naming where the column
# name is included with the values by using `hive_style = FALSE`.
# Write a structure X/Y/part-Z.parquet.
two_levels_tree_no_hive <- tempfile()
mtcars %>%
group_by(cyl, gear) %>%
write_dataset(two_levels_tree_no_hive, hive_style = FALSE)
list.files(two_levels_tree_no_hive, recursive = TRUE)
#> [1] "4/3/part-0.parquet" "4/4/part-0.parquet" "4/5/part-0.parquet"
#> [4] "6/3/part-0.parquet" "6/4/part-0.parquet" "6/5/part-0.parquet"
#> [7] "8/3/part-0.parquet" "8/5/part-0.parquet"